
treat obesity and metabolic diseases. Indeed, studies by our
group and others have shown that BAT transplantation reverses
metabolic disorders in various obese mouse models (17–19).

Given the several common features between PCOS and a
metabolic syndrome, we aimed to investigate whether BAT
possibly plays an important role in the development of PCOS

Fig. 1. BAT transplantation reverses PCOS BAT activity. BAT activity was assessed at the end of the experiment (3 wk after tissue transplantation) by using
PET-CT. BAT transplantation could significantly increase endogenous BAT activity in the DHEA+BAT group compared with the DHEA+sham or DHEA+Mus
groups (A). Yellow triangle indicates the anatomical site of the interscapular BAT. The activity of brown adipose tissue, expressed as the standard uptake
values (SUVs), dramatically decreased in the DHEA+sham and DHEA+Mus groups compared with the control and BAT transplantation groups (B). Fur-
thermore, BAT transplantation could significantly increase BAT-specific marker gene expression (C ) and OXPHOS protein expression (D), as well as UCP1
expression (E ), compared with the DHEA+sham or DHEA+Mus groups. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. n = 8–10 per
group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).

Fig. 2. BAT transplantation reverses PCOS metabolic abnormality. An infrared thermal image demonstrates that cold exposure significantly reduced
body temperature of the DHEA+sham and DHEA+Mus groups whereas BAT transplantation significantly reversed DHEA-induced body temperature
reduction (A and B). In addition, BAT transplantation significantly increased whole-body energy expenditure compared with the DHEA+sham or
DHEA+Mus groups (C and D). Moreover, results from a glucose tolerance test (E ) and insulin tolerance test (F ) showed that BAT transplantation
significantly reversed DHEA-induced glucose intolerance. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. n = 8–10 per group.
(A and B) P < 0.05. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).
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up to normal levels (Fig. 3E). In particular, rats in the DHEA +
sham and DHEA+Mus groups were infertile and unable to give
birth to a litter; however, BAT transplantation enabled the PCOS
rat to deliver a litter (Fig. 3F and Table S3). Collectively, these
results indicate that BAT transplantation could significantly re-
verse infertility in the PCOS rat.

Administration of Adiponectin Recapitulates the Beneficial Effects of
BAT Transplantation in the PCOS Rat.In our previous study, we
showed that transplanted BAT activated endogenous BAT and
increased the circulating adiponectin level in an obese mouse (17).
Thus, we determined whether the adiponectin level is altered in
the PCOS human and rat. Consistent with a previous report
(28), the circulating adiponectin level was significantly de-
creased in both the PCOS patient and rat (Fig. S3A and B and
Table S4). Therefore, we reasoned that adiponectin might ac-
count, at least in part, for the beneficial effects of BAT trans-
plantation in the PCOS rat. To address this question, a PCOS
rat was daily injected with recombinant adiponectin protein
(10 μg/kg BW) for 20 d. Results from PET-CT (Fig. 4A andB), as
well as cold-induced thermogenesis (Fig. 4C and D), showed that
administration of adiponectin in a PCOS rat significantly in-
creased endogenous BAT activity up to the level of the control
group. Similar to BAT transplantation, adiponectin treatment also
increased energy expenditure and glucose homeostasis in the
PCOS rat (Fig. 4 E and F). In addition, adiponectin treatment
markedly attenuated the plasma LH/FSH ratio that was increased
in the DHEA +sham group (Fig. 5A and B). Interestingly, adi-
ponectin treatment significantly reversed DHEA-induced acy-
clicity (Fig. 5C and Table S5), ovarian phenotypes (Table S5), and
infertility in the PCOS rat (Fig. 5D and Table S5). These results
highlight that the beneficial effects of BAT transplantation are
partly mediated by an elevated circulating adiponectin level.

Discussion
In the current study, we showed that BAT activity was dramat-
ically decreased in the PCOS rat and that BAT transplantation
effectively ameliorated most of the symptoms found in the PCOS

rat. In addition, we revealed that the beneficial effects of BAT
transplantation in the PCOS rat were mediated by the increased
circulating adiponectin level. To the best of our knowledge, this
study is the first study showing that the activity of BAT is asso-
ciated with clinical phenotypes of PCOS in an animal model. We
believe that the current study points out BAT as a previously
unidentified target organ for the treatment of PCOS.

Mice neonatally androgenized with testosterone that induces
PCOS showed a significant decrease in energy expenditure (29).
It has been speculated that this phenomenon could be due to the
BAT hypofunction (30). In agreement with previous findings,
BAT-specific thermogenic gene expression, UCP1, and mito-
chondrial OXPHOS protein expression and cold-induced ther-
mogenic capacity, which are key factors accounting for the
reduction of energy metabolism, were reduced in our PCOS rat
(Fig. 1), indicating that the DHEA-induced PCOS rat had a
significant defect in energy metabolism and BAT activity.

In parallel, it was also reported that women with PCOS show
increased sympathetic tone (31). Consistently, we observed that
sympathetic innervation, as evidenced by TH staining, was in-
creased in the ovaries of the DHEA-treated PCOS rat (Fig. 2C).
Sustained high sympathetic tone causes insensitivity of BAT and
later influences disrupted whole-body energy metabolism in
PCOS. Taken together, these results suggest that the attenuation
of BAT activity might play a significant pathogenic role in PCOS.

It has been widely appreciated that women with PCOS show
insulin resistance and glucose intolerance (32). On the other
hand, BAT activity is often negatively associated with diabetes
status but positively correlated with glucose uptake activity
in humans (33). Recently, we demonstrated that BAT trans-
plantation has a beneficial effect on the prevention and treat-
ment of obesity in the HFD-induced obese mouse, as well as in
the genetic obese Ob/Ob mouse (17, 18). In addition, we showed
that BAT transplantation significantly improved glucose ho-
meostasis in both diet-induced obesity and genetic obesity mice
models (17, 18). In agreement with previous results, we observed
that DHEA-induced glucose intolerance was significantly re-
versed by transplantation of BAT, but not muscle (Fig. 2E and F).

Fig. 5. Adiponectin reverses PCOS acyclicity, ovarian phenotypes, and infertility. The concentrations of luteinizing hormone (LH) and the LH/FSH ratio were significantly
increased in the DHEA group compared with the control group, and it was reversed to a normal level after adiponectin treatment (A and B). In addition, adiponectin
treatment could significantly reverse DHEA-induced acyclicity (C) and pregnant capacity in the PCOS rodent (D). Data were analyzed by one-way ANOVA with Tukey’s
post hoc test. n = 6 per group. Different lowercase letters indicate significant differences among groups (One-way ANOVA, with Tukey’s post hoc test, P < 0.05).
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These results again emphasize the important role of BAT in glucose
homeostasis.

The remaining question we had was how the transplanted
BAT displayed beneficial effects on PCOS. We speculated that
the beneficial effects of BAT transplantation might be from
activated endogenous BAT that might secret systemic brown
adipose tissue-derived adipokine (batokine). In our previous
report, we demonstrated that BAT transplantation in obese
mice significantly increased the circulating adiponectin level
(17), which is known to be attenuated in women with PCOS
(34). Consistently, we also confirmed that there was a signifi-
cant reduction of the circulating adiponectin level in both
PCOS women and the DHEA-treated rats. Interestingly, we
found that the adiponectin level was significantly reversed to
normal level after BAT transplantation (Fig. S3 A and B).
These results led us to investigate whether adiponectin ad-
ministration recapitulates the beneficial effects of BAT trans-
plantation in the PCOS rat. After adiponectin treatment,
decreased BAT activity, metabolic abnormalities, acyclicity,
and abnormal hormonal levels were surprisingly normalized up
to normal levels in the PCOS rat. Based on recent publications,
BAT also secretes a considerable number of adipokines, such as
adiponectin, FGF21, NGF, NRG4, VEGF, and BMPs (16, 35).
We have observed that there was no significant difference of
FGF21 or NGF levels between groups (Table S6). Gunawardana
et al. (36) reported that BAT transplantation can reverse type 1
diabetes in streptozotocin-treated mice without exogenous in-
sulin treatment. Furthermore, we and other group have shown
that BAT transplantation reversed metabolic disorders in various

obese mouse models (17–19). These results further suggest
that BAT secretes systemic mediators that could regulate in
whole-body glucose homeostasis. It should be noted that we do
not exclude other factors mentioned above that may be involved
in the beneficial effects of BAT transplantation in the PCOS rat
model. However, in our hands, we observed that adiponectin alone
was enough to recapitulate the beneficial effects of BAT trans-
plantation in the PCOS rat. Other mechanisms behind the adipo-
nectin effect for the treatment of PCOS would be necessary to be
revealed in the near future. Taken together, our findings highlight
that systemic adiponectin treatment significantly improves PCOS
phenotypes in an animal model.

In conclusion, we demonstrate here that BAT transplantation
could significantly improve PCOS phenotypes, including disrupted
energy metabolism, acyclicity, and infertility. In addition, these
beneficial effects of BAT transplantation were at least in part
mediated by systemic adiponectin. Because BAT transplantation
is not easily applied to human beings, administration of bato-
kines or drugs that enhance BAT activity will be alternative
strategies for the treatment of PCOS.
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