人工智能技术与生命组学的融合已成为关键趋势,为生命科学的创新发展提供强大动力。赵方庆团队提出人工智能驱动的空间蛋白组学技术框架,首次实现全组织切片水平的高分辨率空间蛋白质组检测,突破高通量原位组学技术瓶颈(Cell, 2025);通过网格化微流控芯片设计,开发出高通量、大视野的空间转录组学新技术,为大规模三维组织研究及复杂转录过程分析开辟新路径(Nature Genetics, 2024);提出全转录组可编程智能测序新技术,将全转录组捕获技术与计算机编程实时操控算法结合,实现目标转录本精确检测及无偏定量(Nature Cell Biology, 2024);建立的单液滴水平的胞外小囊泡异质性追踪算法,为海量单细胞转录组学数据解析提供独特视角(Nature Methods, 2024)。
相关科研成果(发表论文、专利、标准等):
1. Hu B, He R, Pang K, Wang G, Wang N, Zhu W, Shi X, Teng H, Liu T, Zhu J, Jiang Z, Zhang J, Zuo Z, Wang W, Ji P* & Zhao F*. High-resolution spatially resolved proteomics of complex tissues based on microfluidics and transfer learning. Cell, 2025, 188(3):734-748.
2. Zhu J, Pang K, Hu B, He R, Wang N, Jiang Z, Ji P & Zhao F*. Custom microfluidic chip design enables cost-effective three-dimensional spatiotemporal transcriptomics with a wide field of view. Nature Genetics, 2024, 56:2259-2270.
3. Zhang J, Hou L, Ma L, Cai Z, Ye S, Liu Y, Ji P, Zuo Z & Zhao F*. Real-time and programmable transcriptome sequencing with PROFIT-seq. Nature Cell Biology, 2024, 26:2183-2194.
4. He R, Zhu J, Ji P* & Zhao F*. SEVtras delineates small extracellular vesicles at droplet resolution from single-cell transcriptomes. Nature Methods, 2024, 21:259-266.